Les nombres complexes : de leurs origines aux
plus grandes questions des Mathématiques ou
comment gagner 1 million de dollars grace a
2
v = —1.
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Un mathématicien remporte 1
mille lions,

1 Un peu d’histoire : Cardan et les équations du
troisiéme degré

On peut vulgairement décrire le corps des nombres complexes comme le corps
des réels auxquels on a ajouté les nombres dits "imaginaires", qui sont les racines
carrées des nombres négatifs. Dans la suite de vos études, vous verrez que ces
nombres complexes ont de nombreuses applications. Mais de quand datent
I’apparition des nombres complexes et pourquoi les a-t-on introduit ? Pour cela
il faut remonter en pleine Renaissance et & la rencontre d’un mathématicien
appelé Cardan.

Les mathématiciens aiment bien les formules. En particulier les formules
explicites qui donnent les racines d’un polynéme : plus besoin de faire de divi-
sions euclidiennes ou d’utiliser des algorithmes compliqués, il suffit d’appliquer
la formule ! Par exemple pour trouver les racines du bindme du second degré
ax? 4+ bx + ¢, on a la formule du delta que vous connaissez bien :
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On peut évident se demander si de telles formules existent aussi pour les polynémes
de degré plus grand que 2. En fait on peut montrer que ces formules existent
encore pour des polynomes de degré 3 ou 4 (malheureusement & partir de 5 les

Ty b — dac > 0.



formules n’existent plus, c’est la célébre théorie de Galois qui le démontre, mais
ces quelques lignes ne racontent pas cette histoire...)
Le génial mathématicien Cardan (1501-1576) affirma qu’une des racines de
I’équation du troisiéme degré
P pr+q=0

était donnée par

Les mathématiciens de I’époque testérent la formule sur de nombreuses équa-
tions. Appliquée a I’équation 23 — 122 + 16 = 0 cela donne par exemple :
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La méme formule appliquée cette fois & I’équation 23 — 152 — 4 = 0 donne
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Oh ! Une racine carrée d’un nombre négatif. Si les mathématiciens s’étaient
arrétés comme on le fait pour les équations du second degré, c’est-a-dire conclure
qu’il n’y a pas de solutions puisqu’on tombe sur des racines carrées indéfinies,
I’histoire des nombres complexes se serait arrétée la. Ils auraient conclu que
I’équation n’a pas de solution et le probléme aurait été réglé. Cependant on
peut vérifier que 4 est une solution de z® — 152 — 4 = 0. La formule de Cardan
serait-elle fausse 7 Peut-étre pas... Les mathématiciens ont continué le calcul,
en écrivant /—121 = v/121/—1 = 11\/—1 et ont considéré /—1 comme une
quantité que ’on pouvait manipuler comme n’importe quel nombre réel. Ils
découvrirent, que

V2+ V=121 =2+ vV—Tet /2— V=121 =2 — /—1.

En écriture moderne, on peut en effet vérifier que

(2+i0)? =24 11i = 24+ v/—121.

Par conséquent

x:</2+\/—121+ §/2—\/—121=2+\/—1+2—\/— =4

et la formule de Cardan fonctionne ! Et tout d’un coup i = v/—1 fit son entrée
dans I'histoire des Mathématiques...Depuis les nombres complexes conquirent le
monde scientifique et poursuivirent leur chemins jusqu’a devenir le centre de la
question des Mathématiques la plus célébre de tous les temps.




2 Gagner 1 million de dollars avec les nombres
complexes

Le 24 mai 2000, U'institut de Mathématiques Clay proposa une liste de 7 prob-
lémes de Mathématiques jugés insurmontables (1 seul a été résolu aujourd’hui).
Parmi eux on trouve la trés célébre "conjecture de Riemann". Avant de vous
présenter la dite conjecture, tachons de fixer un peu le cadre.

De méme que ’on peut définir des fonctions réelles, c’est-a-dire des fonctions
f :R — R, on peut tout a fait construire des fonctions qui prennent des nombres
complexes comme entrées et recrachent des nombres complexes, c’est-a-dire f :
C — C. Une trés célébre fonction est la fonction ¢ : C — C (le symbole grec ¢
s’appelle zeta) qui est définie comme suit : pour z € C on définit

1
C(2) =) —-
n=1 n
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Notez déja que ( est une fonction bien étrange puisqu’elle s’écrit comme une
série, c¢’est-a-dire une somme infinie ! Vous ’avez stirement déja rencontrée dans
vos cours d’analyse car ((2) est la série
>

"2

n=1 n
que l'on sait convergente et égale %2.

En plus ¢ est un peu comme les assassins de Games of Throne, elle peut
changer de visages ! Par exemple pour z tel que Re(z) > 1 on a ’écriture de
zeta comme vu plus haut
1

((z) = ne
n=1
Mais pour z tel que 0 < Re(z) < 1 zeta s’écrit comme
z = {t}
z2)=———2 dt
<) z—1 /0 [an

ou {t} est la partie fractionnaire du nombre réel ¢ (exemple : {1.1} = 0.1).
Quelle écriture étrange !

Cette fille est / )
etade
Riemann!




Zeta est & présent une intégrale entre 0 et 'infini (notez que s’il y a un
nombre complexe dans une intégrale, cela ne change rien, on la traite comme
lintégrale que vous avez apprise dans vos cours d’analyse.) Et on pourrait
continuer comme cela, zeta ayant encore d’autres écritures pour les z de partie
réelle négative. Bref c’est une fonction bien étrange.

Mais alors me direz-vous qu’elle est le rapport entre zeta et cette conjecture
de Riemann ? Riemann (1826-1866) s’intéressait, parmi de nombreux sujets
variés, aux fonctions complexes et en particulier & cette fonction zeta qu’il a
introduite la toute premiére fois en 1859 (on l'appelle d’ailleurs aujourd’hui la
fonction zeta de Riemann). Parmi les questions qu’il se posait, il y avait celle-ci
: ou sont les zéros de zeta ? Eh oui, de méme que Cardan s’intéressait aux zéros
des équations du troisiéme degré, Riemman cherchait & connaitre les z tels que
¢(z) = 0. On peut démontrer que tous les entiers négatifs du type —2k, k € N*
sont des zéros. On les appelle les zéros triviaux, les autres éventuels zéros sont
dits non triviaux. Par exemple, on peut démontrer qu’il y a des zéros non
triviaux parmi les nombres complexes qui s’écrivent z = % +1y,y € R. Notez
que ’ensemble

1 1
AZ{ZECIZZ2+iy,y€]R}={z€(C:Re(z):2}

décrit en fait une droite verticale qui coupe I’axe horizontale en = 1/2, comme
décrit sur le figure 1.

1
L'axe Re(z) = 3
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Figure 1: L’axe Re(z) = 1 dans le plan complexe.



Aussi étrange que ces racines puissent paraitre, jusqu’a présent on ne trouva
pas de zéro de la fonction zeta qui ne soit pas un zéro trivial ou un nombre
complexe de partie réelle Re(z) = 3. En fait, Riemann lui-méme P’avait constaté
et émit cette conjecture

Conjecture (Conjecture de Riemann). Si z € C est tel que ((z) = 0, alors soit
z = =2k pour un certain k € N* soit z € A.

Dis autrement, la conjecture de Riemman stipule que tous les zéros non
trivaux se trouvent dans 'ensemble A, c’est-a-dire sur 'axe vertical Re(z) = 3.

Personne encore n’a été capable de démontrer cette conjecture ou alors de
trouver un zéro non trivial qui se situe ailleurs que sur axe Re(z) = % La
question est si difficile qu’elle fait partie de nombreuses listes de problémes que
les mathématiciens jugent vraiment importants de résoudre. Encore plus re-
marquable, la célébre conjecture fait partie d’une liste de questions portant sur
la fonction zeta. Depuis on a été capable de résoudre nombres de ces questions,
sauf en particulier celle portant sur la dite conjecture. Encore plus incroyable,
certaines de ces questions autour de zeta sont des conséquences de la conjecture
de Riemann si on la suppose vraie | Et pourtant, malgré que I’on sait démon-
trer tous ces autres résultats, impossible de remonter jusqu’a la preuve de la
conjecture.

En dehors du pur intérét mathématique, la conjecture de Riemann a des
implications importantes en théorie des nombres. En particulier, elle est liée a
la répartition des nombres premiers dans la droite réelle. C’est d’ailleurs pour
étudier cette répartition que Riemann s’était intéressé a zeta. Quand on sait
que de nombreux algorithmes de cryptage de données sont basés sur les nombres
premiers, on se doute bien que la fonction zeta et la résolution de la conjecture
est un sujet largement débattu et étudié par la communauté mathématique.
Cette derniére considére en général que la conjecture est vraie. Evidemment, on
aimerait vous en montrer une preuve ! Et tout le monde attend avec impatience
cette derniére. En attendant, on peut se satisfaire de vérifier cette conjecture
par ordinateur, comme cela vous est présenté dans la prochaine partie de ce
document.

3 Vérification de la conjecture de Riemann par
ordinateur et le calcul scientifique

3.1 Une premiére idée

La recherche des zéros de la fonction zeta a donc bousculé la communauté
mathématique pendant des années. Armés du glaive de la démonstration, les
mathématiciens sont partis en croisade pour explorer toutes les zones du plan
complexe & la recherche de ces mystérieux zéros. On pourrait évidemment se
dire qu’il suffirait de faire calculer & un ordinateur ((z) pour tous les z et de
regarder s’il y a des zéros non triviaux ailleurs que sur Re(z) = 3. Malheureuse-

ment, passer en revue l'infinitié des nombres complexes est une approche un peu



désespérée...Heureusement pour nous, les Mathématiques sont toujours la pour
nous secourir et on a été capable d’éliminer une aprés ’autre des zones du plan
complexe dans lesquelles on a pu démontrer qu’il n’y avait pas de zéros de zeta.
Aujourd’hui, I’état de la situation est la suivante. On sait avec certitude que les
zéros de zeta sont soit les zéros triviaux du type —2k, k € N*, soit se trouvent
dans la bande 0 < Re(z) < 1 du plan complexe. On appelle cette bande la
bande critique que 'on a dessinée dans la figure 2. La conjecture de Riemann
revient donc & dire que tous les zéros de la bande critique se trouvent en fait sur
I'axe Re(z) = 1. Evidemment il y a toujours une infinité de nombres complexes
a controler dans cette bande, mais on a déja gagné un petit peu.
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Figure 2: La bande critique Re(z) €]0,1[ et l'axe Re(z) = % dans le plan
complexe.

Une stratégie pour attaquer la conjecture de Riemann par ordinateur consiste
a faire comme on le ferait pour trouver les zéros d’une fonction réelle, par
exemple 2 — 1 : on dessine le graphe de la fonction et on regarde si celui-ci
coupe 'axe horizontal. Evidemment, puisque que les nombres complexes sont
des points dans R2, cela reviendrait a représenter graphiquement la fonction
¢ : R? = R?, c’est-a-dire en 4 dimension, et ce n’est pas facile. Mais on peut
utiliser ’astuce suivante : on fixe la partie réelle de z, disons zy, et on ne
considére que des z qui s’écrivent comme o + iy et on fait varier y. On regarde
alors la fonction

fuo () = ((zo + iy)

qui est une fonction qui va de R dans C (C que 'on va identifier & R?). On



peut grapher cette fonction comme on le fait par exemple pour le cercle que ’on
obtient en représentant dans le plan les points

(cos(y),sin(y)),y € [07 277]'

Ici on va calculer les points

(Re(¢(wo + iy)), Im(¢ (o + iy)) € R?

et on les place dans le plan bidimensionnel. Vous avez un exemple dans la figure
3 ot on a représenté graphiquement (1 + iy) pour y € [0,34] (on a choisit 34
pour s’arréter quelque part et parce que le dessin est joli, mais évidemment il
faudrait prendre y entre —oo et +00). A chaque fois que la courbe passe par
(0,0), c’est qu’on est tombé sur un zéro de zeta (puisque que 0 s’écrit comme
0 + 40 et donc s’identifie avec l'origine (0,0) du plan). On voit trés bien avec
cette figure que sur Paxe Re(z) = z¢ = %, il y en a beaucoup, comme Riemann
I’avait découvert.
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Figure 3: Graphe de la fonction ¢ (% + zy) pour y € [0, 34] dans R2. La courbe
passe & plusieurs reprises par le point (0,0) représenté par 'intersection de deux
1

axes rouges. Il y a donc des zéros de zeta sur Re(z) = 5.

Maintenant prenons g €]0, 1], mais différent de % pour tester la conjecture
de Riemann. Si elle est vraie, la courbe obtenue ne devrait jamais passer par
(0,0). Par exemple pour zo = 0.25 (figure 4) et zo = 0.75 (figure 5), on constate
que la courbe gigotte autour ou prés du point (0,0) mais ne passe jamais par
lui. Cela ne constitue par une preuve de la conjecture car il faudrait calculer
ce graphe pour toute partie réelle entre 0 et 1 (et pour toute valeur de y), mais
cela donne déja une petite idée.
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Figure 4: Graphe de la fonction ¢ (§ + iy) pour y € [0, 34] dans R?. La courbe

ne passe jamais par le point (0,0) représenté par l'intersection de deux axes
1

rouges. Il n’y a donc probablement pas de zéros de zeta sur Re(z) = ;.
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Figure 5: Graphe de la fonction ¢ (3 + iy) pour y € [0, 34] dans R?. La courbe
ne passe jamais par le point (0,0) représenté par l'intersection de deux axes
3

rouges. Il n’y a donc probablement pas de zéros de zeta sur Re(z) = 3.

3.2 Une meilleure idée

Il existe une autre maniére de s’attaquer a la conjecture par le calcul scientifique.
Une maniére beaucoup plus rigoureuse que de tester tous les points de la bande
critique et beaucoup plus solide. Comme on vous ’a expliqué dans les cours de
logique, quand une question est trop dure, on peut essayer de montrer qu’elle est
équivalente & une question plus simple, et s’occuper de démontrer cette derniére.
C’est exactement ce que des mathématiciens chevronnés ont fait : ils n’ont pas
démontré la conjecture mais ils ont montré qu’elle était équivalente a ce qu'une
certaine suite de nombres réels u,, converge vers 1. Autrement dit, la conjecture
est vraie si et seulement lim,, .., u,, = 1. Or utiliser un ordinateur pour calculer
un nombre u, est autrement plus faisable que de chercher tous les z tels que
¢(z) =0.

Cette suite de nombre est définie comme suit : on calcule tout d’abord la



suite de nombres complexes ¢, = Re(c,,) +4Im(c,) avec (attention cela devient
trés barbare)

Re(c,) = i/ r(2) 850 (2)gn(z) (an(z)dn (z) + by (x)cpn(2))da

2 J_4
Im(cy,) = —% g 7(2) 80 (@) (2) (an (@) e (2) — by (2)dn (2))da:
ou
) = e (w) = (14099527 g, (x) = (a+0.995%) 5"

¢ (3 + Larctan(x))
an () = cos((n — 1) arctan(—0.995x)), by, (z) = sin((n — 1) arctan(—0.995x)),
cn(x) = cos((n+1) arctan(—0.9952"1)), d,, (x) = sin((n+1) arctan(—0.995z~1)).

Ensuite on calcule le module de ¢,, et on en prend la racine n-iéme, c’est-
a-dire on deéfinit u, = ¥{/|c,|. Méme si la suite a une écriture trés longue et
trés étrange (il serait d’ailleurs trés difficile de vous expliquer le lien de cette
suite avec la conjecture sans des centaines de pages de théorie sur les nombres
complexes...), elle reste du moins trés facilement calculable par ordinateur avec
quelques lignes de code dans votre langage favori ! Nous avons par exemple
calculé les valeurs de cette suite pour n = 1, 2, ..., 1000 et on a obtenu les résultats
suivants dans la table 1 :

ugg1 = 0.993276 | uggs = 0.993332
U992 — 0.993283 U997 — 0.993348
U993 — 0.9933 U998 — 0.993355
Uggq = 0.993307 | uggg = 0.993373
uggs = 0.993324 | w1900 = 0.993379

Table 1: Quelques éléments de la suite u,. On constate que u,, converge vers 1,
ce qui indique que la conjecture de Riemann devrait étre vraie.

On peut aussi représenter la suite graphiquement comme dans la figure 6 ou
on a graphé u, en fonction de n. On observe le comportement voulu c’est-a-dire
que u, — 1. Cela ne constitue par une preuve de la conjecture de Riemann, car
notre ordinateur ne peut pas calculer ezactement les u,, (ordinateur arrondit
les valeurs) et encore moins pour n jusqu’a 'infini | Mais on a quand méme
une bonne intuition que la conjecture doit étre vraie puisqu’on observe le bon
comportement pour u,,.



1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 | B

0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Figure 6: Graphe de la suite u, en fonction de n. On observe que la suite
s’écrase sur 1 quand n devient grand.

4 Conclusion

Et maintenant ot en sommes-nous ? Ce petit document avait pour but de vous
faire découvrir les origines des nombres complexes et de vous montrer qu’ils
sont encore aujourd’hui au coeur de la recherche et un sujet d’actualité. La
conjecture de Riemann n’est pas le seul sujet important de nos jours qui traitent
des nombres complexes. Il y a de trés nombreux domaines de recherches et
applications ou ils sont présents. Rien que pour vous écrire ce petit document
par exemple, on a da compresser des images pour pouvoir les uploader sur
internet ! De nos jours, il n’y pas de compression de musiques ou de films sans
avoir recours quelque part a ¢. Voyager dans les nombres complexes c’est un
peu se prendre pour Peter Pan : on explore le pays imaginaire, mais tout ce
qu’on y découvre est bien réel.

“Get

pe

Rational!

"Se faire mettre les points sur les i !"

10



