
Les nombres complexes : de leurs origines aux

plus grandes questions des Mathématiques ou

comment gagner 1 million de dollars grâce à

i2 = −1.
Cours de Mathématiques MAN 1A, EPFL

1 Un peu d'histoire : Cardan et les équations du

troisième degré

On peut vulgairement décrire le corps des nombres complexes comme le corps
des réels auxquels on a ajouté les nombres dits "imaginaires", qui sont les racines
carrées des nombres négatifs. Dans la suite de vos études, vous verrez que ces
nombres complexes ont de nombreuses applications. Mais de quand datent
l'apparition des nombres complexes et pourquoi les a-t-on introduit ? Pour cela
il faut remonter en pleine Renaissance et à la rencontre d'un mathématicien
appelé Cardan.

Les mathématiciens aiment bien les formules. En particulier les formules
explicites qui donnent les racines d'un polynôme : plus besoin de faire de divi-
sions euclidiennes ou d'utiliser des algorithmes compliqués, il su�t d'appliquer
la formule ! Par exemple pour trouver les racines du binôme du second degré
ax2 + bx+ c, on a la formule du delta que vous connaissez bien :

x± =
−b±

√
b2 − 4ac

2a
, si b2 − 4ac ≥ 0.

On peut évident se demander si de telles formules existent aussi pour les polynômes
de degré plus grand que 2. En fait on peut montrer que ces formules existent
encore pour des polynômes de degré 3 ou 4 (malheureusement à partir de 5 les
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formules n'existent plus, c'est la célèbre théorie de Galois qui le démontre, mais
ces quelques lignes ne racontent pas cette histoire...)

Le génial mathématicien Cardan (1501-1576) a�rma qu'une des racines de
l'équation du troisième degré

x3 + px+ q = 0

était donnée par

x =
3

√
−q
2
+

√(p
3

)3
+
(q
2

)2
+

3

√
−q
2
−
√(p

3

)3
+
(q
2

)2
.

Les mathématiciens de l'époque testèrent la formule sur de nombreuses équa-
tions. Appliquée à l'équation x3 − 12x+ 16 = 0 cela donne par exemple :
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= −4.

La même formule appliquée cette fois à l'équation x3 − 15x− 4 = 0 donne
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√
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√
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√
2−
√
−121.

Oh ! Une racine carrée d'un nombre négatif. Si les mathématiciens s'étaient
arrêtés comme on le fait pour les équations du second degré, c'est-à-dire conclure
qu'il n'y a pas de solutions puisqu'on tombe sur des racines carrées indé�nies,
l'histoire des nombres complexes se serait arrêtée là. Ils auraient conclu que
l'équation n'a pas de solution et le problème aurait été réglé. Cependant on
peut véri�er que 4 est une solution de x3 − 15x− 4 = 0. La formule de Cardan
serait-elle fausse ? Peut-être pas... Les mathématiciens ont continué le calcul,
en écrivant

√
−121 =

√
121
√
−1 = 11

√
−1 et ont considéré

√
−1 comme une

quantité que l'on pouvait manipuler comme n'importe quel nombre réel. Ils
découvrirent que

3

√
2 +
√
−121 = 2 +

√
−1 et

3

√
2−
√
−121 = 2−

√
−1.

En écriture moderne, on peut en e�et véri�er que

(2± i)3 = 2± 11i = 2±
√
−121.

Par conséquent

x =
3

√
2 +
√
−121 + 3

√
2−
√
−121 = 2 +

√
−1 + 2−

√
−1 = 4

et la formule de Cardan fonctionne ! Et tout d'un coup i =
√
−1 �t son entrée

dans l'histoire des Mathématiques...Depuis les nombres complexes conquirent le
monde scienti�que et poursuivirent leur chemins jusqu'à devenir le centre de la
question des Mathématiques la plus célèbre de tous les temps.
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2 Gagner 1 million de dollars avec les nombres

complexes

Le 24 mai 2000, l'institut de Mathématiques Clay proposa une liste de 7 prob-
lèmes de Mathématiques jugés insurmontables (1 seul a été résolu aujourd'hui).
Parmi eux on trouve la très célèbre "conjecture de Riemann". Avant de vous
présenter la dite conjecture, tâchons de �xer un peu le cadre.

De même que l'on peut dé�nir des fonctions réelles, c'est-à-dire des fonctions
f : R→ R, on peut tout à fait construire des fonctions qui prennent des nombres
complexes comme entrées et recrâchent des nombres complexes, c'est-à-dire f :
C → C. Une très célèbre fonction est la fonction ζ : C → C (le symbole grec ζ
s'appelle zeta) qui est dé�nie comme suit : pour z ∈ C on dé�nit

ζ(z) =

∞∑
n=1

1

nz
.

Notez déjà que ζ est une fonction bien étrange puisqu'elle s'écrit comme une
série, c'est-à-dire une somme in�nie ! Vous l'avez sûrement déjà rencontrée dans
vos cours d'analyse car ζ(2) est la série

∞∑
n=1

1

n2

que l'on sait convergente et égale π2

6 .
En plus ζ est un peu comme les assassins de Games of Throne, elle peut

changer de visages ! Par exemple pour z tel que Re(z) > 1 on a l'écriture de
zeta comme vu plus haut

ζ(z) =

∞∑
n=1

1

nz
.

Mais pour z tel que 0 < Re(z) < 1 zeta s'écrit comme

ζ(z) =
z

z − 1
− z

∫ ∞
0

{t}
tz+1

dt

où {t} est la partie fractionnaire du nombre réel t (exemple : {1.1} = 0.1).
Quelle écriture étrange !
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Zeta est à présent une intégrale entre 0 et l'in�ni (notez que s'il y a un
nombre complexe dans une intégrale, cela ne change rien, on la traite comme
l'intégrale que vous avez apprise dans vos cours d'analyse.) Et on pourrait
continuer comme cela, zeta ayant encore d'autres écritures pour les z de partie
réelle négative. Bref c'est une fonction bien étrange.

Mais alors me direz-vous qu'elle est le rapport entre zeta et cette conjecture
de Riemann ? Riemann (1826-1866) s'intéressait, parmi de nombreux sujets
variés, aux fonctions complexes et en particulier à cette fonction zeta qu'il a
introduite la toute première fois en 1859 (on l'appelle d'ailleurs aujourd'hui la
fonction zeta de Riemann). Parmi les questions qu'il se posait, il y avait celle-ci
: où sont les zéros de zeta ? Eh oui, de même que Cardan s'intéressait aux zéros
des équations du troisième degré, Riemman cherchait à connaitre les z tels que
ζ(z) = 0. On peut démontrer que tous les entiers négatifs du type −2k, k ∈ N∗
sont des zéros. On les appelle les zéros triviaux , les autres éventuels zéros sont
dits non triviaux . Par exemple, on peut démontrer qu'il y a des zéros non
triviaux parmi les nombres complexes qui s'écrivent z = 1

2 + iy, y ∈ R. Notez
que l'ensemble

A =

{
z ∈ C : z =

1

2
+ iy, y ∈ R

}
=

{
z ∈ C : Re(z) =

1

2

}
décrit en fait une droite verticale qui coupe l'axe horizontale en x = 1/2, comme
décrit sur le �gure 1.

Figure 1: L'axe Re(z) = 1
2 dans le plan complexe.
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Aussi étrange que ces racines puissent paraitre, jusqu'à présent on ne trouva
pas de zéro de la fonction zeta qui ne soit pas un zéro trivial ou un nombre
complexe de partie réelle Re(z) = 1

2 . En fait, Riemann lui-même l'avait constaté
et émit cette conjecture

Conjecture (Conjecture de Riemann). Si z ∈ C est tel que ζ(z) = 0, alors soit

z = −2k pour un certain k ∈ N∗ soit z ∈ A.

Dis autrement, la conjecture de Riemman stipule que tous les zéros non
trivaux se trouvent dans l'ensemble A, c'est-à-dire sur l'axe vertical Re(z) = 1

2 .
Personne encore n'a été capable de démontrer cette conjecture ou alors de

trouver un zéro non trivial qui se situe ailleurs que sur l'axe Re(z) = 1
2 . La

question est si di�cile qu'elle fait partie de nombreuses listes de problèmes que
les mathématiciens jugent vraiment importants de résoudre. Encore plus re-
marquable, la célèbre conjecture fait partie d'une liste de questions portant sur
la fonction zeta. Depuis on a été capable de résoudre nombres de ces questions,
sauf en particulier celle portant sur la dite conjecture. Encore plus incroyable,
certaines de ces questions autour de zeta sont des conséquences de la conjecture
de Riemann si on la suppose vraie ! Et pourtant, malgré que l'on sait démon-
trer tous ces autres résultats, impossible de remonter jusqu'à la preuve de la
conjecture.

En dehors du pur intérêt mathématique, la conjecture de Riemann a des
implications importantes en théorie des nombres. En particulier, elle est liée à
la répartition des nombres premiers dans la droite réelle. C'est d'ailleurs pour
étudier cette répartition que Riemann s'était intéressé à zeta. Quand on sait
que de nombreux algorithmes de cryptage de données sont basés sur les nombres
premiers, on se doute bien que la fonction zeta et la résolution de la conjecture
est un sujet largement débattu et étudié par la communauté mathématique.
Cette dernière considère en général que la conjecture est vraie. Evidemment, on
aimerait vous en montrer une preuve ! Et tout le monde attend avec impatience
cette dernière. En attendant, on peut se satisfaire de véri�er cette conjecture
par ordinateur, comme cela vous est présenté dans la prochaine partie de ce
document.

3 Véri�cation de la conjecture de Riemann par

ordinateur et le calcul scienti�que

3.1 Une première idée

La recherche des zéros de la fonction zeta a donc bousculé la communauté
mathématique pendant des années. Armés du glaive de la démonstration, les
mathématiciens sont partis en croisade pour explorer toutes les zones du plan
complexe à la recherche de ces mystérieux zéros. On pourrait évidemment se
dire qu'il su�rait de faire calculer à un ordinateur ζ(z) pour tous les z et de
regarder s'il y a des zéros non triviaux ailleurs que sur Re(z) = 1

2 . Malheureuse-
ment, passer en revue l'in�nitié des nombres complexes est une approche un peu
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désespérée...Heureusement pour nous, les Mathématiques sont toujours là pour
nous secourir et on a été capable d'éliminer une après l'autre des zones du plan
complexe dans lesquelles on a pu démontrer qu'il n'y avait pas de zéros de zeta.
Aujourd'hui, l'état de la situation est la suivante. On sait avec certitude que les
zéros de zeta sont soit les zéros triviaux du type −2k, k ∈ N∗, soit se trouvent
dans la bande 0 < Re(z) < 1 du plan complexe. On appelle cette bande la

bande critique que l'on a dessinée dans la �gure 2. La conjecture de Riemann
revient donc à dire que tous les zéros de la bande critique se trouvent en fait sur
l'axe Re(z) = 1

2 . Evidemment il y a toujours une in�nité de nombres complexes
à contrôler dans cette bande, mais on a déjà gagné un petit peu.

Figure 2: La bande critique Re(z) ∈]0, 1[ et l'axe Re(z) = 1
2 dans le plan

complexe.

Une stratégie pour attaquer la conjecture de Riemann par ordinateur consiste
à faire comme on le ferait pour trouver les zéros d'une fonction réelle, par
exemple x2 − 1 : on dessine le graphe de la fonction et on regarde si celui-ci
coupe l'axe horizontal. Evidemment, puisque que les nombres complexes sont
des points dans R2, cela reviendrait à représenter graphiquement la fonction
ζ : R2 → R2, c'est-à-dire en 4 dimension, et ce n'est pas facile. Mais on peut
utiliser l'astuce suivante : on �xe la partie réelle de z, disons x0, et on ne
considère que des z qui s'écrivent comme x0+ iy et on fait varier y. On regarde
alors la fonction

fx0
(y) = ζ(x0 + iy)

qui est une fonction qui va de R dans C (C que l'on va identi�er à R2). On
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peut grapher cette fonction comme on le fait par exemple pour le cercle que l'on
obtient en représentant dans le plan les points

(cos(y), sin(y)), y ∈ [0, 2π].

Ici on va calculer les points

(Re(ζ(x0 + iy)), Im(ζ(x0 + iy)) ∈ R2

et on les place dans le plan bidimensionnel. Vous avez un exemple dans la �gure
3 où on a représenté graphiquement ζ( 12 + iy) pour y ∈ [0, 34] (on a choisit 34
pour s'arrêter quelque part et parce que le dessin est joli, mais évidemment il
faudrait prendre y entre −∞ et +∞). A chaque fois que la courbe passe par
(0, 0), c'est qu'on est tombé sur un zéro de zeta (puisque que 0 s'écrit comme
0 + i0 et donc s'identi�e avec l'origine (0, 0) du plan). On voit très bien avec
cette �gure que sur l'axe Re(z) = x0 = 1

2 , il y en a beaucoup, comme Riemann
l'avait découvert.

Figure 3: Graphe de la fonction ζ
(
1
2 + iy

)
pour y ∈ [0, 34] dans R2. La courbe

passe à plusieurs reprises par le point (0, 0) représenté par l'intersection de deux
axes rouges. Il y a donc des zéros de zeta sur Re(z) = 1

2 .

Maintenant prenons x0 ∈]0, 1[, mais di�érent de 1
2 pour tester la conjecture

de Riemann. Si elle est vraie, la courbe obtenue ne devrait jamais passer par
(0, 0). Par exemple pour x0 = 0.25 (�gure 4) et x0 = 0.75 (�gure 5), on constate
que la courbe gigotte autour ou près du point (0, 0) mais ne passe jamais par
lui. Cela ne constitue par une preuve de la conjecture car il faudrait calculer
ce graphe pour toute partie réelle entre 0 et 1 (et pour toute valeur de y), mais
cela donne déjà une petite idée.
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Figure 4: Graphe de la fonction ζ
(
1
4 + iy

)
pour y ∈ [0, 34] dans R2. La courbe

ne passe jamais par le point (0, 0) représenté par l'intersection de deux axes
rouges. Il n'y a donc probablement pas de zéros de zeta sur Re(z) = 1

4 .

Figure 5: Graphe de la fonction ζ
(
3
4 + iy

)
pour y ∈ [0, 34] dans R2. La courbe

ne passe jamais par le point (0, 0) représenté par l'intersection de deux axes
rouges. Il n'y a donc probablement pas de zéros de zeta sur Re(z) = 3

4 .

3.2 Une meilleure idée

Il existe une autre manière de s'attaquer à la conjecture par le calcul scienti�que.
Une manière beaucoup plus rigoureuse que de tester tous les points de la bande
critique et beaucoup plus solide. Comme on vous l'a expliqué dans les cours de
logique, quand une question est trop dure, on peut essayer de montrer qu'elle est
équivalente à une question plus simple, et s'occuper de démontrer cette dernière.
C'est exactement ce que des mathématiciens chevronnés ont fait : ils n'ont pas
démontré la conjecture mais ils ont montré qu'elle était équivalente à ce qu'une
certaine suite de nombres réels un converge vers 1. Autrement dit, la conjecture
est vraie si et seulement limn→∞ un = 1. Or utiliser un ordinateur pour calculer
un nombre un est autrement plus faisable que de chercher tous les z tels que
ζ(z) = 0.

Cette suite de nombre est dé�nie comme suit : on calcule tout d'abord la
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suite de nombres complexes cn = Re(cn) + i Im(cn) avec (attention cela devient
très barbare)

Re(cn) =
1

2π

∫ 1

−1
r(x)sn(x)qn(x)(an(x)dn(x) + bn(x)cn(x))dx

Im(cn) = −
1

2π

∫ 1

−1
r(x)sn(x)qn(x)(an(x)cn(x)− bn(x)dn(x))dx

où

r(x) =
1− 0.9952

ζ
(
3
4 + 1

π arctan(x)
) , sn(x) = (1+0.9952x2)

n−1
2 , qn(x) = (x2+0.9952)−

n+1
2

an(x) = cos((n− 1) arctan(−0.995x)), bn(x) = sin((n− 1) arctan(−0.995x)),

cn(x) = cos((n+1) arctan(−0.995x−1)), dn(x) = sin((n+1) arctan(−0.995x−1)).

Ensuite on calcule le module de cn et on en prend la racine n-ième, c'est-
à-dire on dé�nit un = n

√
|cn|. Même si la suite a une écriture très longue et

très étrange (il serait d'ailleurs très di�cile de vous expliquer le lien de cette
suite avec la conjecture sans des centaines de pages de théorie sur les nombres
complexes...), elle reste du moins très facilement calculable par ordinateur avec
quelques lignes de code dans votre langage favori ! Nous avons par exemple
calculé les valeurs de cette suite pour n = 1, 2, ..., 1000 et on a obtenu les résultats
suivants dans la table 1 :

u991 = 0.993276 u996 = 0.993332
u992 = 0.993283 u997 = 0.993348
u993 = 0.9933 u998 = 0.993355
u994 = 0.993307 u999 = 0.993373
u995 = 0.993324 u1000 = 0.993379

Table 1: Quelques éléments de la suite un. On constate que un converge vers 1,
ce qui indique que la conjecture de Riemann devrait être vraie.

On peut aussi représenter la suite graphiquement comme dans la �gure 6 où
on a graphé un en fonction de n. On observe le comportement voulu c'est-à-dire
que un → 1. Cela ne constitue par une preuve de la conjecture de Riemann, car
notre ordinateur ne peut pas calculer exactement les un (l'ordinateur arrondit
les valeurs) et encore moins pour n jusqu'à l'in�ni ! Mais on a quand même
une bonne intuition que la conjecture doit être vraie puisqu'on observe le bon
comportement pour un.
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Figure 6: Graphe de la suite un en fonction de n. On observe que la suite
s'écrase sur 1 quand n devient grand.

4 Conclusion

Et maintenant où en sommes-nous ? Ce petit document avait pour but de vous
faire découvrir les origines des nombres complexes et de vous montrer qu'ils
sont encore aujourd'hui au coeur de la recherche et un sujet d'actualité. La
conjecture de Riemann n'est pas le seul sujet important de nos jours qui traitent
des nombres complexes. Il y a de très nombreux domaines de recherches et
applications où ils sont présents. Rien que pour vous écrire ce petit document
par exemple, on a dû compresser des images pour pouvoir les uploader sur
internet ! De nos jours, il n'y pas de compression de musiques ou de �lms sans
avoir recours quelque part à i. Voyager dans les nombres complexes c'est un
peu se prendre pour Peter Pan : on explore le pays imaginaire, mais tout ce
qu'on y découvre est bien réel.

"Se faire mettre les points sur les i !"
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